دانلود پایان نامه مهندسی مواد

کامپوزیتهای زمینه آلومینیومی تقویت شده با زیرکن و اثر ساخت بر ریزساختار

 
 
 

کامپوزیت ها و انواع آن:

   معنی لغوی کامپوزیت به معنی ماده ای است که از اجزا و قسمتهای مختلفی ساخته شده باشد. بسیاری از مواد که معموﻷ تحت اصطلاحات دیگری مشخص شده اند، درحقیقت می توانند نوعی کامپوزیت باشند، مانند: فلزات روکش دار، اندود شده، آبکاری شده و پلاستیک های تقویت شده وغیره. با تعریف فوق، از آنجائیكه تقریباً اكثر مواد طبیعی و مصنوعی را می توان كامپوزیت به حساب آورد، به تعریفی جامع تر و تخصصی تر از آن می پردازیم. كامپوزیت ماده ای است كه دارای چهار ویژگی ذیل باشد :
۱- جامد ؛
۲- مصنوعی( در این تعریف كامپوزیت طبیعی حذف می شود) ؛
۳- متشكل از دو یا چند جزء (یا فاز) كه از نظر شیمیایی یا فیزیكی كاملا متفاوتند و بصورت منظم یا پراكنده كنار هم قرار گرفته اند و فصل مشتركی بین آنها وجود دارد؛
۴- دارای خواص و ویژگیهای هستند كه هیچ یك از فازهای تشكیل دهنده به تنهایی نمی توانند آنها را داشته باشند [۱].
 
به طور کلی کامپوزیت ها دارای دو جزﺀ می باشند :
الف) زمینه؛                 
ب) تقویت کننده.       
  مقدار فاز تقویت کننده کمتر از زمینه می باشد، همچنین فازهای تقویت کننده معمولا سخت تر بوده و دارای خواص مکانیکی بالاتری از فازهای زمینه می باشند.
    کامپوزیت ها بر اساس فاز زمینه به انواع زیر تقسیم می شوند [۲]:
۱- كامپوزیت با زمینه پلیمری؛
۲-كامپوزیت با زمینه سرامیكی؛
۳-كامپوزیتهای كربن ـ كربن؛ 
۴ -كامپوزیت با زمینه بین فلزی؛
۵ -كامپوزیت با زمینه فلزی.
 
 
 
کلمات کلیدی:

انواع کامپوزیت

بررسی کامپوزیتها

کامپوزیتهای زمینه فلزی

روشهای تولید کامپوزیتهای زمینه فلزی

 
 
 
 
فهرست مطالب
۲-۱- کامپوزیت ها و انواع آن                                                                              
۲-۱-۱- کامپوزیت‌های زمینه پلیمری  PMCS    
۲-۱-۲-  کامپوزیت‌های زمینه سرامیکی   CMCS
۲-۱-۳- کامپوزیت‌های کربن - کربن CCCS    
۲-۱-۴-  کامپوزیت‌ها با زمینه بین فلزی   IMCS
۲-۱-۵- کامپوزیت‌های زمینه فلزی     MMCS      
۲-۱-۶-  انواع تقویت‌کننده‌ها و خواص آنها
۲-۱-۷- معرفی فلزAl  بعنوان فاز زمینه کامپوزیت 
۲-۱-۸- معرفی خواص زیرکن 
۲-۱-۹-  دلایل استفاده از کامپوزیت Al-Zircon و کاربرد آن 
 

۲-۲-  روش های تولید کامپوزیت های زمینه فلزی

۲-۲-۱-  روش گردابی 
۲-۲-۲- روش کمپوکستینگ
۲-۲-۳-  روش ریخته گری کوبشی 
۲-۲-۴- روش ریخته‌گری فشار بالا 
۲-۲-۵-  روش رخنه‌دهی 
۲-۲-۶-  روش درجا 
۲-۲-۷-  روش شکل دهی توسط اسپری 
۲-۲-۸- روش متالورژی پودر
۲-۲-۹- مزایا  و  معایب استفاده از روش متالورژی پودر برای تولید کامپوزیت
 

۲-۳: کامپوزیت های زمینه آلومینیمی تقویت شده با زیرکن

۲-۳-1: توزیع ذرات زیرکن در نمونه ها

 

۲-۴- تاثیرفرآیند پروسه ساخت برریزساختار

۲-۴-۱: خواص مكانیكی كامپوزیتهای Al-Zircon
۲-۴-۱-۱: تاثیر کسر حجمی  
۲-۴-۱-۲- تاثیر روش تولید و اندازه ذره 
۲-۴-۱-۳- تاثیر مواد افزودنی
۲-۴-۲-  اثر مقدار و اندازه ذارت 4ZrSiO بر روی چگالی
۲-۴-۳-  اثر مقدار و اندازه ذرات Zircon بر روی سختی
۲-۴-۴- اثر مقدار و اندازه ذارت تقویت كننده  بر استحکام  فشاری و کششی، مدول یانگ وتغییر طول تا شکست 
۲-۴-۵- اثر مقدار واندازه ذرات Zircon بر ریزساختار کامپوزیت Al-Zircon
2-4-6-اثر دمای تف جوشی بر روی خواص و ریزساختارکامپوزیت
منابع
 
 
 
فهرست تصاویر
شكل ۲-۱ . طبقه بندی مواد كامپوزیت]۱۲[. 
شکل ۲-۲: نمایش یک کریستال طبیعی zircon تک بلور [۱۵].
شکل ۲-۳: نمایش صفحات کریستالی zircon تک بلور [۱۵].
شکل ۲-۴: نمایی از شبکه کریستالی پیچیده zircon [۱۶].
شكل۲-۵.  روشهای ساخت كامپوزیت های زمینه فلزی [۱۲].
شكل ۲-۶ .  سهم روشهای مختلف تولید كامپوزیت های زمینه فلزی  در صنعت [۱۳].
شکل ۲- ۷ . شمایی ازتولید کامپوزیت زمینه فلزی به روش گردابی [۱۷].
شکل ۲-۸ . شمایی از روش شکل دهی توسط اسپری فلز مذاب [۳۱].
شكل۲-۸ .  نمایی از فرآیند پرس سرد ایزواستاتیک [۱۸].
شكل۲-۹ .  نمایی از فرآیند پرس  بوسیله  سمبه  و  ماتریس [۱۸].
شكل۲-۱۰ .  تعدادی از فرآیندهای رایج اكستروژن در متالورژی پودر [۱۹]. 
شکل ۲-۱۱ . فرآیند های  متداول  متالورژی پودر [۱۹].
شکل ۲-۱۲ .  شماتیکی از فرایند  اتصال از طریق انتقال اتمها  به  نقاط گردنی در هنگام تف جوشی  [۲۰].
شکل ۲-۱۳ . شماتیکی از تغییرات میکروسکوپی در هنگام تف جوشی  [۲۰]. 
شکل۲-۱۴: کامپوزیت های زمینه آلومینیومی، (a حاوی ذرات آلومینا ۴۴-۷۴µm ،  b) حاوی ذرات آلومینا ۷۴- ۱۰۵ µm 
،  c) حاوی ذرات زیرکن۴۴-۷۴µm و  d)حاوی ذرات زیرکن۷۴- ۱۰۵ µm [۲۸].
شکل۲-۱۵. دیاگرام دوتایی 2SiO-2ZrO.
شکل ۲-۱۶: تغییرات سختی نمونه های کامپوزیتی تقویت شده با آلومینا و زیرکن با اندازه ذرات مختلف [۲۸].
شكل۲- ۱۷: نرخ سایش کامپوزیت های مختلف زمینه  آلومینیمی و آلومینیم خالص [۲۸].
شكل۲- ۱۸: کاهش حجم در طی سایش کامپوزیت های مختلف زمینه  آلومینیمی و آلومینیم خالص [۲۸].
شکل ۲- ۱۹ : شکل الکترونی سطح سایشی  a)نمونه حاویSiC  b) حاوی زیرکن(۴۴-۷۴µm) و c)حاوی زیرکن (۷۴-۱۰۵µm)[۲۸].
شكل۲- ۲۰: شکل  میکروسکوپی سطح سایشی نمونه های a) آلومینیوم خالص b)حاوی ذرات آلومینا ۴۴-۷۴µm 
 c) حاوی آلومینا ۷۴-۱۰۵µm d)حاوی زیرکن۴۴-۷۴µm و e)حاوی زیرکن۷۴- µm ۱۰۵[۲۸].
شکل ۲-۲۱ . کاهش چگالی کامپوزیت با افزایش درصد حجمی تقویت کننده [۲۲]. 
شکل ۲-۲۲. افزایش تخلخل با افزایش تقویت کننده [۲۲].
شکل ۲-۲۲ . افزایش چگالی با افزایش مقدار و اندازه ذرات تقویت کننده [۱۸]. 
شکل ۲-۲۳ . افزایش تخلخل با افزایش درصد وزنی تقویت کننده [۱۸].
شکل ۲-۲۴ . تغییرات سختی با تغییر مقدار و اندازه ذارت  [۱].
شکل ۲-۲۵ . تغییرات سختی با تغییر مقدار ذارت آلومینا [۵].
شکل ۲-۲۶ . افزایش استحکام فشاری با افزایش مقدار تقویت کننده [۳۱].
شکل ۲-۲۷ . نمودار فشار ماده کامپوزیتی حاوی ذرات BN  [۸].
شکل۲-۲۸ . کاهش تغییر طول با افزایش مقدار تقویت کننده [۲۲].
شکل ۲-۲۹ . افزایش استحکام تسلیم با افزایش مقدار  SiC برای آلیاژ Al-Cu--Mn [۲۲].
شکل ۲-۳۰ . افزایش استحکام کششی با افزایش مقدار  SiC برای آلیاژ Al-Cu--Mn [۲۲].